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Abstract

Bell's theorem can be proved through simple geometrical reasoning, without the need for

the v-function, probability distributions, or calculus. The proof is based on N. David Mermin's

explication of the Einstein-Podolsky-Rosen-Bohm experiment, which involves Stem-Gerlach

detectors which flash red or green lights when detecting spin-up or spin-down. The statistics of

local hidden variable theories for this experiment can be arranged in colored strips from which

simple inequalities can be deduced. These inequalities lead to a demonstration of Bell's theorem.

Moreover, all local hidden variable theories can be graphed in such a way as to enclose their

statistics in a pyramid, with the quantum-mechanical result lying a f'mite distance beneath the base

of the pyramid.
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I. INTRODUCTION

Can local measurements influence distant events? In their famous paper, Einstein,

Podolsky, and Rosen (EPR for short) asked this question in the context of quantum mechanics I.

Subsequent authors have clarified the issues involved in this surprisingly subtle question, among

them David Bohm. Bohm posed the EPR paradox in terms of a particular experimental

arrangement 2. The EPR-Bohm Gedankenexperiment in turn helped lead John S. Bell to his

celebrated theorem. Bell _ proved the answer to be yes; local measurements can influence distant

events. He proved it by showing that hidden variables of a particular sort, namely local hidden

variables, cannot explain quantum statistics.

Numerous authors since Bell have sought to reduce the theorem to its essence, including

Eugene Wigner 5 and N. David Mermin 6. Mermin gives a remarkably clear and simple explanation

of what Bell's theorem is all about. And while he gives an example of local hidden variables

which cannot explain quantum statistics, he does not actually give a proof of Bell's theorem.

My purpose here is to elaborate on Mermin's view a little and give a geometrical

demonstration of Bell's theorem, without the use of the wfunction, probability distributions, or

calculus. In addition to geometry, only a little algebra is needed. It is to be hoped that this

exposition will be intelligible to high school students; reading Mermin's article 6 first would help in

this regard.

There are other geometrical approaches to Bell's theorem, such as that of Fivel 7 and of

Massad and Aravind s. The latter base their proof for a spin 3/2 particle on the Penrose

dodecahedron.

II. EPR-BOHM EXPERIMENT

Suppose (as Mermin does) we have the usual EPR-Bohm experimental arrangement: two

detectors, A and B, as shown in Figure 1. Each detector has Stern-Gerlach magnets, which
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measurespin-upor spin-downfor aneutron. (Eventhoughaneutronhasno chargeit still hasa

magneticmoment.)The magnetsin eachdetectorcanberotatedto positions1,2, or 3; thethree

positionsare 120° apartfromeachother. If aneutronenteringdetectorA is deflectedtowardthe

northpoleasit passesbetweenthemagnets,thentheredlight flashes;if deflectedtowardthe

south,thegreenlight flashes.DetectorB doestheopposite:aredlight flasheswhentheneutronis

deflectedtowardthesouthpole,andgreenwhendeflectedtowardthenorth. Thusin Mermin's

set-upthedetectorsarewireddifferently.

Now considerthefollowing experiment:twoneutronsin thesingletstate(in whichthetotal

angularmomentumiszero)fly apart;oneneutronentersdetectorA; theotherentersB. Thesetting

of eachdetectorandwhich light flashes(redorgreen)isrecorded.The detectorsettingsarethen

variedatrandomandtwo moreneutronsin thesingletstatefly apartandenterthedetectors.The

wholeprocessis repeatedoverandover longenoughuntil idealstatisticsareobtained.We will

write (1,2) whendetectorA is setto position 1andB to position2, and(3,1)whenA is setto 3

andB to 1,etc.;sothatthesettingfor A is writtenasthef'trstnumberin parenthesesandthesetting

for B thesecondnumber. Similiarly, wewill writeRG whenthelight on detectorA flashesred

andthelight on B flashesgreen,andsoon.

Figure 2 showsaportionof thedatathus obtained. The lights flash RR half the time and

GG the other half when the settings are (1,1), (2,2), and (3,3). For the other settings the lights

sometime flash the same colors and sometimes opposite colors. All together the lights flash RR,

GG, RG, and GR each one-fourth of the time in the EPR-Bohm experiment.

III. BELL'S CLASSICAL MODEL

Bell 3 examined the EPR-Bohm experiment from the viewpoint of a model from classical

physics which can be understood in the context of Mermin's flashing lights. In his model a

particle has spin angular momentum L. Upon entering detector A the light flashes G when L.H <

0 and R when L'H > 0; detector B does the opposite. Here H is the magnetic field vector and the
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localhiddenvariablesarethedirectioncosinesof thespinvectors.Theyarelocalbecausethe

directioncosinesapplyonly to eachindividualparticle. Theyarenot fields,for example,which

pervadeall of spaceandwould thereforebenonlocal. Theyarehiddenbecausewehavenodirect

knowledgeof them. Andof coursethedirectioncosinesarevariablesbecausetheorientationof

thespinscanvary.

In Bell's model theflashinglights from thesettings(1,1), (2,2),and(3,3) in theEPR-

Bohmexperimentappearto beunderstandable.In thesettings(1,1),for example,thelights flash

eitherRR or GG,reflectingconservationof angularmomentum:if detectorA measures(say)L.H

< 0, thendetectorB has to measure L-H > 0, giving a response GG. The lights can never flash

RG or GR. This makes sense: in the singlet state the spin vector of one particle points in one

direction and the spin vector of the other particle points in the opposite direction. Moreover, for

(1,1) the lights flash RR half the time, and GG the other half. This also makes sense: we would

expect the axis defined by the spin vectors to be randomly distributed in space, so that half the time

a given detector measures L-H > 0 and the other half L.H < 0. Identical remarks hold for settings

(2,2) and (3,3). Bell's model explains these aspects of the data.

With the settings (1,2) the lights in the EPR-Bohm experiment can flash anything: RR,

RG, GR, or GG. This is likewise true for (1,3), (2,1), (2,3), (3,1), and (3,2). This also makes

sense in Bell's classical model: with the axes of the detectors canted at 120 ° to each other, when

L.H > 0 for one detector, sometimes L.H > 0 for the other detector as well, causing them to flash

different colors.

Where Bell's classical model breaks down is in trying to explain the statistics of the

flashing lights when all of the data are looked at: in the EPR-Bohm experiment the lights flash RR

one-quarter of the time, GG a quarter, RG a quarter, and GR a quarter. It was Bell's great

accomplishment to show that these statistics cannot be reproduced by his classical model -- or any

other model whatsoever where the two detectors are independent of one another. By

"independent" we mean no connection between the detectors. For instance, if detector A is on

setting 1 and destined to flash G when after the neutrons separate, then it should not matter
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whether detector B is suddenly set to 1, 2, or 3; detector A will still flash G.

communication between the two.

There is no

IV. LOCAL HIDDEN VARIABLES

Let us consider a local hidden variables experiment, or LHV experiment for short, just to

illustrate the steps leading to the geometrical proof of Bell's theorem. Unlike the quantum-

mechanical EPR-Bohm experiment, the detectors are now independent of each other. Figure 3

gives an example of various equally long runs in this hypothetical experiment when the detectors

have fixed settings. The hidden variables {ai}, {bi} .... can be anything or combinations of

anything: spin direction, quark coordinates, or other mundane or exotic parameters. It doesn't

matter, so long as they are local.

We examine the N outcomes for a particular run when the detectors are set to (1,1). The

outcomes can be considered to be written on a paper tape, rather like the sales slip given to a

customer at a supermarket check-out counter. As Figure 3 shows, the lights flash RR when the

hidden variables have values {ai}, GG when the hidden variables have values {bi}, then GG again

for {ci}, and so on. Half the time the lights flash RR and the other half GG. (In the figure N = 10

for the purposes of illustration; we will actually base our proof on long runs which give ideal

statistics.) The column on the right shows the product for each outcome. The product rules are

simple: R × R = G x G = +1, while R x G = G x R = -1. For (1,1) each product is necessarily

+1. The sum Sll of all the products is shown at the bottom of the product column; in this case, Sll

= +10. Likewise for the equally long runs (2,2) and (3,3) nothing but +l's appear in the product

column, so that s22 = s33 = +10 as well. Naturally, when these other runs are made we do not

expect the hidden variables to appear in the same order as for (1,1). For run (2,2), for instance,

the actual order might have been {fi}, {bi}, {di} .... , but we can rearrange rows as we see fit and
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not disturbthesums,andwechoosefor themomentto arrangethemsothatthehiddenvariables

appearin alphabeticalorder.

Now consider(1,2). Themostimportantthingto noteaboutthisrun is thatdetectorA on

setting1still respondsto {ai} with R anddetectorB onsetting2 with G. Similarly, to {bi} A

respondswith G andB with R, andsoon. Theresponsesof agivendetectoraredeterminedby its

own settingandthehiddenvariablesof theneutronenteringit; noton thesettingof theother

detectornor onthehiddenvariablesof theotherneutron,for whatgoesonat onedetectoris

independentof theother,asassumed.

In (1,2) +l's and-l's appearin theproductcolumn,unlike (1,1), (2,2), and(3,3), which

haveonly +l's. The sums_2couldnowbeapositiveor negativenumber;in thefigure, it happens

to benegative:s12= -6. In considering(2,1) it is clearthatby symmetrys21-_s12always,sothat

s21= -6. Likewise s31= s13ands3z= S23 by symmetry. For the figure sl3 = s31 = +2 and s23 =

s32 = -6. In this example stzjust happens to be equal to s23; but other examples can be found

where this is not the case.

In the following we will be concerned with the sum S of all the runs:

S -" Sll + s22 + s33 -1-s12 + s21 + s13 -!- s31 -t- s23+ s32.

Using Sll + s22 + s33 = 3Sll and S12 = S21 etc., this becomes

S = 3Sll + 2s12 + 2s13 + 2s23 (1)

in general. Our LHV experiment gives S = 3 (+10) + 2 (-6) + 2 (+2) + 2 (-6) = 30 -12 + 4 - 12 =

+10. On the other hand, in the ideal statistics of the quantum-mechanical EPR-Bohm experiment,

the lights flash RR, GG, RG, and GR one-quarter of the time each, so that S = 0 for the EPR-

Bohm experiment.
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Question:canwe find localhiddenvariablesandconstructdetectorssuchthat(i) the

detectorsareindependentof eachother,(ii) agivendetectoronagivensettingflashesR half the

time during therunandG theotherhalf, (iii) thedetectorsalwaysflashthesamecolor for (1,1),

(2,2),and(3,3),and(iv) flashoppositecolorsoftenenoughfor theothercombination(1,2),

(1,3),etc. sothatS= 0? If wecan,thenwecanreproducethestatisticsof theEPR-Bohm

experiment.

Bell's theorem says we can't. The proof is based only on the possible responses of the

detectors.

To see this, we will rearrange the rows, so that all of the green responses are on top for

(1,1) and all the red responses at the bottom, as shown in Figure 4. Naturally (1,2), (1,3), and

(2,3) must also be rearranged to keep the proper responses with the proper hidden variables. This

is also shown in the figure. These rearrangements do not affect the sums sll, sl2, etc., or S. Only

(1,1), (l,2), (1,3), and (2,3) are shown in Figure 4 since by (1) these are all that are needed to

compute S.

We now proceed more abstractly. First, we omit the hidden variable list and the product

column from the tapes as distractions. Second, we get rid of the letters G and R and the lines

separating the outcomes, so that for our particular example (1,1), (1,2), etc. appear as in Figure 5.

Third, we normalize the length of each tape by dividing by 9N, the total number of responses for

all nine different runs, so that each tape is now 1/9 unit long. Now Sll = +1/9, sl2 = -1/15, s13 =

+1/45, and s23 = -1/15 in our example, so that S = +1/9, by (1).

Thus we go from discrete entries on the tapes to red and green bars. This transition from

writing letters in boxes to simple geometry frees us to consider any number of hidden variables and

give a very general proof of Bell's theorem.

V. BELL'S THEOREM
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We will now abandon our specific example and prove Bell's theorem by considering a

collection of tapes from a generic LHV experiment, as shown in Figure 6. It is assumed that the

number of outcomes is so large that ideal statistics are obtained. Each tape is once again

normalized in length so as to be 1/9 unit long. Center lines are drawn across each tape halfway

down, to distinguish the top half from the bottom half, since we will need to consider each half in

our proof.

Moving on to our proof, suppose in (1,2) x is the total length of the green area of detector

B on setting 2 which is above the center line; then 0 < x < 1/18. Further, the total length of the

green area below the center line is 1/18 - x and obviously satisfies 0 < 1/18 - x < 1/18. The sum

Sla is easy to figure out: for the top half of the tape, an amount x will be positive and 1/18 - x will

be negative, and for the bot{om half an amount x will be positive and 1/18 - x will be negative, so

that s12 = x - (1/18 -x) + x - (1/18 - x) = 4x - 1/9. Likewise with (1,3) ify is the total length of the

green area when detector B is on setting 3, then s13 = 4y - 1/9. Clearly sl I = 1/9. Thus S, using

(1), can be written

S = 3 (1/9) + 2 (4x - 1/9) + 2 (2y - 1/9) + 2 s23 = 8x + 8y - 1/9 + 2s23 (2)

We now need to consider s23. Let us find its smallest value, so that S is the smallest

possible number. How do we find the smallest value of s23? Clearly we need to match as much

green area on one side of the tape with as much red area as possible on the other• One way to

accomplish this is the following. On the top half of the tape push all of the green area on the left

side to the top and all of the green area against the center line, as shown in Figure 7. The area of

each color is conserved in the process.

Now suppose x + y < 1/18. The green parts will contribute -x - y to s23, while the red

spaces opposite each other in the middle contribute 1/18 - x - y, so that the total contribution of the

top half of the tape to s23 is 1/18 - 2x - 2y. Likewise, the bottom half of the tape also contributes

1/18 - 2x - 2y, giving a total of 1/9 - 4x - 4y as the lower limit on s23. Thus
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s23 > 1/9 - 4x - 4y (3)

Plugging (3) into (2) gives S > +1/9.

By similar reasoning, it is easy to show that ifx + y > 1/18, then S > 16x + 16y - 7/9. So

it must be that

S > +1/9 (4)

for any x and y. Hence the smallest possible value is S = +1/9 in a local hidden variables theory.

However, in the EPR-Bohm experiment (wherein x = y = 1/72) we have S = 0, Therefore the

statistics of the EPR-Bohm experiment cannot be explained by any local local hidden variables

theory at all. Thus quantum mechanics cannot be a local hidden variables theory. This is Bell's

theorem.

Suppose the actual statistics of the EPR-Bohm experiment are found to differ from

quantum mechanics by S = e (E being a small number), indicating the need for a new theory

beyond quantum mechanics. Can the new theory be local? The answer is no, because of the finite

difference between E and +1/9. This unbridgable gap is also part of Bell's theorem. Any new

theory must of necessity be nonlocal to explain the data.

Martin Gardner 9 invented a parlor game based on the EPR-Bohm experiment. The object

was to reproduce the EPR-Bohm statistics. This game cannot be played with the desired result.

It can also be shown that with local hidden variables the lights must flash the same colors at

least 5/9 of the time, in agreement with Mermin 6. The expression (4) is somewhat reminiscent of

the Clauser-Horne-Holt-Shimony inequality _°.

VI. A LAZY PYRAMID
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We found above the minimum possible value value of S for any x and y in a local theory.

What about the maximum value of S in a local theory?

The maximum value of S can be found with the same geometrical technique we used to find

s23, only this time we match as much green with green and as much red with red as possible. The

answer turns out to be S = 16x + 1/9 for x < y and S = 16y + 1/9 for x > y. The graph of all

possible values of S versus x and y, wherein the lights flash equally RR and GG for settings (1,1),

(2,2) and (3,3), is given in Figure 8. It shows that all local theories are entombed in the lazy,

three-sided pyramid whose base levitates 1/9 unit above the x-y plane. The LHV experiment of

Figures 3 - 5 just happened to have the minimum value of S. For the EPR-Bohm experiment, S is

located in the x-y plane at x = y = 1/72, beneath the pyramid and unreachable by any local theory.

All possible theories, local or nonlocal, for which the lights flash red-red half the time and

green-green the other half when the detectors are set to (1,1), (2,2), or (3,3) can also be graphed,

as shown in Figure 9. The bounds are determined by the fact that the most s23 can be is +1/9 and

the least-1/9. The two figures apply only to the experimental arrangement where the detector

settings are 120 °. The shapes will alter if the detectors are set for other angles.

VII. BELL'S PREFERENCE

Despite occasional "proofs" of their impossibility, hidden variable theories which

reproduce quantum statistics (or close to it) do exist _. They are of course nonlocal.

If the nonlocal hidden variables do exist, then they have curious properties. For instance,

they do not cause the correlations to decay with distance. This is just like local hidden variables.

Moreover, the influence of one detector on the other apparently must travel faster than light, but in
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suchaway thatquantummechanicscannotbeusedto communicateinformationatsuperluminal

speeds_2-_3.

JohnS.Bell himself waspartialto LouisdeBroglie'spilot wavetheory,which was

independentlyrediscoveredanddevelopedby DavidBohm_4.

Againandagainin hisbookSpeakable and Unspeakable in Quantum Mechanics Bell N

proffered the de Broglie-Bohm theory for consideration by the physics community, which he felt

ignored pilot waves too much. On page 160, for instance, he asked the following rhetorical

questions:

But why then had Born not told me [in l/is book Natural

Philosophy of Cause and Chance] of this 'pilot wave'? I.f

only to point out what was wrong with it? Why did von

Neumann not consider it? More extraordinarily, why did

people go on producing 'impossibility proofs', after 1952,

and as recently as 1978? When even Pauli, Rosenfeld, and

Heisenberg could produce no more devastating criticism of

Bohm's version than to brand it as 'metaphysical' and

'ideological'? Why is the 'pilot wave' picture ignored in

textbooks? Should it not be taught, not as the only way, but

as an antidote to the prevailing complacency? To show that

vagueness, subjectivity, and indeterminism, are not forced

on us by experimental facts, but by deliberate theoretical

choice?

Doubtless one reason for the widespread rejection of the de Broglie-Bohm theory was that

it must have seemed like a step backward. The quantum-mechanical equations and their
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Copenhagen interpretation Were hard-won, obtained after years of struggle. But then Bohm came

along and jettisoned the wave-particle duality, complementarity, and conscious observers of the

Copenhagen interpretation in favor of objectivity, determinism, and nonlocal fields (which

explained experiments of the EPR-Bohm ilk). It must have seemed as though the revolution were

called off.

The Copenhagen interpretation still holds sway. One can only speculate on what today's

interpretation of quantum mechanics would be if de Broglie had pushed his ideas to their logical

conclusion before the Copenhagen interpretation became the prevailing view.
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Black and white figure captions

Figure 1

N. David Mermin's version of the EPR-Bohm experiment. Two neutrons in the singlet

state separate: one enters detector A, passing between Stern-Gerlach magnets; the other neutron

enters detector B. A red light flashes on detector A when the neutron is deflected toward the north

pole, and a green light flashes when deflected toward the south. Detector B does the opposite: red

for south and green for north. The magnets of a given detector can be rotated to positions 1, 2, or

3. The angle between positions is 120".

Figure 2

Quantum data produced by the detectors of Figure 1. In the first outcome detector A was

set to position 1 and its red light flashed; detector B was set to position 2 and its green light

flashed. The detectors flash red-red half the time and green-green half the time when they are set to

the same positions (1,1) (2,2), or (3,3). These ideal statistics were manufactured by literally

mixing up outcomes and drawing them out of a hat.

Figure 3

Data for given detector settings in an experiment involving local hidden variables. There

are 10 outcomes in each run. The local hidden variables are shown in the braces to the left of the

colors, while the product column is shown to the right. Same colors give +1 in the product

column, while different colors give - 1. The sum of the + l's and - l's is shown at the bottom of the

product column.
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Figure4

Thedataof Figure3, rearrangedsothatall thegreenresponsesareat thetopwhenthe

detectorsaresetto positions(1,1).

17

Figure5

The dataof Figure 4, normalizedsothateachrun is 1/9unit long. Only (1,1), (1,2), (1,3),

and (2,3) are shown, since these are all that are needed to compute S. The grey areas correspond

Figure 6

The tapes of a generic local hidden variables experiment, where N is so large as to give

ideal statistics. The central lines divide each tape in half. The grey areas correspond to red and the

white areas to green.

Figure 7

On the left is the (2,3) run of the previous figure. The right shows the way to minimize

s23. In the top half of the tape: on the left side, slide all of the green area up to the top, while on the

right side slide all of the green area against the central line. In the bottom half of the tape: on the

left side, slide all of the green area up against the central line, while on the fight side slide all of the

green to the bottom. The area of each color is conserved. The grey areas correspond to red and

the white areas to green.

Figure 8

All local hidden variable theories, in which the lights flash red-red half the time and green-

green the other half when the detectors have the same settings, are entombed in the lazy, three-

sided grey pyramid. The base of the pyramid levitates at + 1/9 unit, forever out of reach of the

quantum-mechanical result in the x-y plane (at x = +1/72 and y = +1/72 and marked QM).
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Figure 9

All local and nonlocal theories for which the lights flash red-red half the time and green-

green the other half when the detectors are set on (1,1), (2,2), or (3,3) are trapped between the

diamonds. The diamonds encase the pyramid. The pyramid, in contrast to Figure 8, is shown

here as a solid and greatly shortened due to the compression of the vertical scale.
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